
Performance Modeling: Experimental
Computer Science at its Best

Peter J. Denning

This is the text of the ACM President’s Letter for the Communications of ACM,
November 1981.

© Copyright 1981-98 by Peter J. Denning.  You may make one personal copy.  All
other copying requires permission.

Part of this essay is based on my editorial, “What is Experimental Computer
Science?" in Communications of ACM, October 1980, pp. 543-544.  The rest is based
on my speech at the ACM SIGMETRICS symposium on performance modeling,
September 15, 1981.

What is experimental computer science?  This question has been widely
discussed ever since the Feldman Report was published in 1979 [13].
Surprisingly, computer scientists disagree on the answer.  Some believe that it
is large system development projects -- i.e., computer and software
engineering.  Some believe that it is all the non-theoretical activities of
computer science, especially those conferring “hands-on” experience.  Some
believe that computer science is still too young and no operational definition
is yet available.

I disagree.  There are well-established standards for experimental science.
The field of performance modeling meets these standards and provides the
best examples of experimental computer science.

Hypotheses, Apparatus, and Tests

Science classifies knowledge.  Experimental science classifies knowledge
derived from observations.  The experimenters set up an apparatus, use it to
collect data about a phenomenon, and then analyze the data to sustain or
refute hypotheses about that phenomenon.  The result of one line of
investigation may be a model that becomes the apparatus for a later line of
investigation.



Denning President’s Letter November 1981 Page 2

The experimental apparatus may be a real system, a subsystem, or a model.
The hypothesis may concern a law of nature, characteristics of people, design
principles of computers, or the quality of models.

The key affects of experimental science are an apparatus for collecting data, a
hypothesis, and systematic analysis to see whether the data supports the
hypothesis.  There is considerable latitude in the types of hypotheses and
apparatuses that may be used.

Two Examples

It is no accident that the best examples of experimental computer science can
be found in the field called performance modeling.  The primary aim of this
field is the construction, validation, and evaluation of computer-system
models that are robust enough to be used for prediction.

I will cite two examples of experimental science in this field. The first is the
M44/44X project at IBM Watson Research Lab in the middle 1960s; this project
evaluated concepts of time sharing, especially memory policies and program
behavior, by implementing and measuring them.  This example illustrates
experimental work in computer systems architecture.  The second example is
the study of queueing network models since 1971; this line of investigation
illustrates how strong interaction between theory and experiment can lead to
a conceptually simple model that may serve as the starting point for future
lines of investigation.  This example illustrates how
yesterday's theorems can become tomorrow's definitions.

The M44/44X Project

The M44/44X project was conducted at the IBM Research Center in Yorktown
Heights, NY, in the middle 1960s.  Its purpose was to evaluate the emerging
concepts of time sharing systems by reducing them to practice and measuring
them.  The central principle of its architecture was a set of virtual machines,
one for each user. The main machine was an IBM 7044 (M44 for short) and
each virtual machine was an experimental image of the 7044 (44X for short).
Virtual memory and multiprogramming were used to implement the
address spaces of the 44X’s in the memory hierarchy of the M44.  This
machine served as the apparatus for numerous experiments about memory
policy and program behavior.

O'Neill (1967 [15]) described the system architecture and early experience with
it.  It is interesting that they recognized the problem of thrashing and solved it
with a load controller.



Denning President’s Letter November 1981 Page 3

Les Belady conducted a series of projects to understand the behavior of paging
algorithms, the effects of page size, and the costs of storage fragmentation.  His
comprehensive paper (1966 [2]) significantly increased our knowledge of
paging algorithms applied to individual programs in fixed allocations of
main memory.  Belady studied half a dozen policies and their variants.  He
concluded that the LRU (least recently used) policy is better than the FIFO
(first in first out) policy, but that a simple variant of FIFO based on usage bits
gave a good approximation to LRU.  He invented the optimal algorithm
(MIN) and compared it with the realizable ones. He measured the effects of
page size on performance, including the amount of superfluous information
on pages (words not referenced after the page is loaded in main memory).  His
study was a model for similar experiments in other systems that
independently corroborated his basic findings.

With multiprogramming, Belady discovered that system performance is
improved by varying the space allocated to individual programs: variable
partitioning is more efficient than fixed.  He and Carl Kuehner (1969 [3])
proposed a model for this that exploited that concave-up shape of the lifetime
curve of a program.  (The lifetime curve gives the mean virtual time between
page faults when a given amount of space is allocated to the program.)

In joint work with Robert Nelson and Jerry Shedler (1969 [4]), Belady observed
that the FIFO policy has anomalous behavior -- that is, it may increase paging
in response to increased space allocation.  (They demonstrated that adding
one page to memory may double the paging rate.)  This work influenced the
later work of Mattson et al. (1970 [14]), whose “stack algorithms” are well
behaved.

In studying storage utilization, Brian Randell concluded that internal
fragmentation is more serious than external fragmentation (1969 [21]).
(Internal fragmentation is storage loss due to rounding up segments to
integral numbers of pages; external fragmentation is storage loss due to holes
in memory being smaller than segments awaiting loading.)  Randell proposed
a new addressing mechanism, called partitioned segmentation, that allocated
a large segment as a “head” consisting of pages and a “tail” consisting of a
segment shorter than the page size.

Meanwhile, David Sayre and his colleagues studied the virtual memory
hypothesis : the performance of properly tuned automatic memory
management is better than the performance of the best handcrafted manual
overlay strategy (1969 [19]).  They compared programs run on the M44 with
the automatic memory manager on and off to conclude that the hypothesis is
correct for programs exhibiting locality of reference.  This set of experiments
laid to rest the remaining doubts about the efficacy of virtual memory.



Denning President’s Letter November 1981 Page 4

Since the time of the M44 experiments, approximately 200 researchers around
the world have contributed to the experimental effort to understand and
optimize virtual memory operating systems (Denning 1980 [11]).  Aside
possibly from the experimental work by Yon Bard and his colleagues on the
CP-67 and VM/370 operating systems at IBM Scientific Center in Cambridge,
MA, I am not aware of any similar project in the public domain.  The
M44/44X project is a unique milestone along the highway of experimental
computer science.

Queueing Network Models

The theory of stochastic queueing networks was developed in the 1950s and
1960s by Jackson, Gordon, and Newell [12].  This theory captured the interest
of the computing community in 1971, when Jeffrey Buzen pointed out their
application to the central server system and showed how to efficiently
compute standard performance metrics in this model [6].  Since that time, a
significant portion of the systems modeling community has been studying
the queueing network hypothesis : the queueing network model is an
accurate, robust description of standard performance metrics for a wide class
of common computer systems.

The principal result of the Jackson-Gordon-Newell theory is that the steady-
state probability of seeing a given apportionment of jobs among the devices of
the system is of the product form -- it is a series of factors, each depending on
the number of jobs present at a given device and on the parameters of that
device. Buzen discovered a simple recursion formula for calculating
performance metrics, such as throughput and response time, at each device
(1973 [7]).

Because the algorithms for these formulae are compact and efficient, they are
easy to program, even on hand calculators. Validation studies soon revealed
that the model will typically estimate the actual utilization to within 5% and
the mean queue length to within 25% [12].  The accuracy of these models is
now so well trusted that most analysts suspect an error in the model or its
parameters if the formulae do not produce answers within these tolerances.

In 1975 Baskett, Chandy, Muntz, and Palacios extended the product form
solution to include multi-class networks [5].  The computational algorithms
were extended for this case by Reiser and Kobayashi (1975 [17]).

By this time the models were being applied to large problems -- many
customers, stations, and job classes.  Numerical instabilities were encountered
in the algorithms for these cases. In 1978 Reiser and Lavenberg [18] proposed
mean value analysis, new recursions that avoided these problems. In using
these equations, many intermediate values will be calculated and discarded



Denning President’s Letter November 1981 Page 5

en route to the mean values of response time and queue length for a large
load.  So Yon Bard, in consultation with Paul Schweitzer, proposed an
approximation For the Reiser-Lavenberg equations that gave excellent results
[1,8].  These equations are shown in the box.

Rk = Sk 1 +
N − 1

N

 
 

 
 Qk ,k = 1,...,K

Qk =
NVk Rk

Vi Ri
i =1

K

∑
,k = 1,...,K

where

R k = Mean response time per visit to device k
Qk = Mean queue length at device k
Sk = Mean service time per visit to device k
V k = Mean number of visits per job to device k .
N = Total number of jobs in system
K = Total number of devices in system
Qk(N-1)/N = Queue length seen by arrival to device k

Equations iterated until Qk converges; initial guess is Qk = N/K.

Bard-Schweitzer Equations

The first equation has a simple intuitive explanation (the response time is the
mean service time per customer multiplied by the mean number of
customers just after an arrival); the second equation is a law.  A growing body
of experimental evidence shows that these equations are sufficiently accurate
and robust for many common systems [10].  More experimental work is
needed to precisely identify the class of systems for which these equations are
good approximations.

I have now arrived at my main point: Because they are intuitive and
validated, The Bard-Schweitzer equations can be used as the starting point for
a theory of queueing networks.  Much of our understanding, experimenting,
and experience of fifteen years with queueing networks has been distilled into
a fine essence, captured by these equations.  Novices can use them wisely and
well.  This could not have happened without constant, complementary
interaction between theoreticians and experimenters.  We are witnessing a
great scientific achievement.



Denning President’s Letter November 1981 Page 6

Conclusion

The established standards of science can be used to distinguish true
experimental research from engineering development projects in our field.
The specialty of systems modeling contains two excellent examples of
experimental science.  I have dwelt here on two.  The M44/44X project is a
paradigm of experimental study to evaluate the architecture of computer
systems. The evolution of queueing network models is a paradigm of the
interaction between theory and experiment, demonstrating that yesterday's
theorems are tomorrow's definitions.

Although I have said that the systems modeling specialty contains the best
examples of experimental computer science, I do not mean to imply that all
work in this specialty is exemplary or that no work in other specialties is in
the true spirit of experimental science.

In emphasizing that development projects are not necessarily experimental
science, I do not mean to downgrade such projects.  These projects can make
substantive contributions to computer and software engineering, which are as
important to the computing field as theory and experiment.

References

1. Y. Bard, “Some extensions to multiclass queueing network analysis,” Proc.
4th Int'l Symposium on Computer Performance Modeling, Measurement,
and Evaluation, H. Beilner and E. Gelenbe, Eds., North-Holland
Publishing Co., Amsterdam, The Netherlands (1979).

 
2. L. Belady, “A study of replacement algorithms for virtual storage

computers,” IBM Systems J. 5, 2 (1966), 78-101.
 
3. L. Belady and C. J. Kuehner, “Dynamic space sharing in computer

systems,” Communications of ACM 12, 5 (May 1969), 282-288.
 
4. L. Belady, R. A. Nelson, and G. S. Shedler, “An anomaly in the space-time

characteristics of certain programs running in paging machines,”
Communications of ACM 12, 6 (June 1969), 349-353.

 
5. F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open, closed,

and mixed networks with different classes of customers,” J. ACM 22, 2
(April 1975), 248-260.

 
6. J. Buzen, “Analysis of system bottlenecks using a queueing network

model,” Proc. ACM SIGOPS Workshop on Systems Performance
Evaluation, ACM, 1133 Avenue of Americas, NY 10036 (1971), 82-103.



Denning President’s Letter November 1981 Page 7

 
7. J. Buzen, “Computational algorithms for closed queueing networks with

exponential servers,” Communications of ACM 16, 9 (September 1973),
527-531.

 
8. J. Buzen and P. J. Denning, “Measuring and calculating queue length

distributions,” IEEE Computer 13, 4 (April 1980), 33-44.
 
9. M. Chandy and C. H. Sauer, “Computational algorithms for product form

queueing networks,” Communications of ACM 23, 10 (October 1980), 573-
583.

 
10. M. Chandy and D. Neuse, “Linearizer: A heuristic algorithm for queueing

network models of computing systems,” Communications of ACM ,
(February 1982).

 
11. P. Denning, “Working sets past and present,” IEEE Trans. Software

Engineering SE-6, 1 (January 1980), 64-84.
 
12. P. Denning and J. Buzen, “The operational analysis of queueing network

models,” Computing Surveys 10, 3 (September 1978), 225-261.
 
13. J. Feldman, editor, “Rejuvenating experimental computer science,”

Communications of ACM 22, 3 (September 1979), 497-502. See also the
ACM Executive Committee position, same issue, pages 503-504.

 
14. L. Mattson, J. Gecsei, D. R. Slutz, and I. W. Traiger, “Evaluation techniques

for storage hierarchies,” IBM Systems J. 9, 2 (1970), 78-117.
 
15. W. O’Neill, “Experience using a time sharing multiprogramming system

with dynamic address relocation hardware,” Proc. AFIPS Computer
Conference 30 (1967 SJCC), 611-621.

 
16. Randell, B., and C. Kuehner.  “A note on storage fragmentation and

program segmentation,” Communications of ACM 12, 7 (July 1969), 365-
369.

 
17. M. Reiser and H. Kobayashi, “Queueing networks with multiple closed

chains: theory and computational algorithms,” IBM J. R. & D. 19 (May
1975), 283-294.

 
18. M. Reiser and S. S. Lavenberg, “Mean value analysis of closed multichain

queueing networks,” J. ACM 27, 2 (April 1980), 313-322.
 
19. D. Sayre, “Is automatic folding of programs efficient enough to displace

manual?” Communications of ACM 12, 12 (December 1969), 656-660.


